

Structural, morphological and magnetic characteristics of Aluminium Supermalloy new magnetic material obtained by mechanical alloying

T.F. Marinca, M.C. Sas, A. Sule, A. Mesaroș, R. Hirean, B.V. Neamțu, F. Popa, C.V. Prică, I. Chicinaș

Why Supermalloy based materials?

Supermalloy - Ni75Fe20Mo5

- Good magnetic induction, extremely high magnetic permeability (1000000), and a low coercivity

- Supermalloy is very useful in ultra-sensitive transformers, especially pulse transformers, and ultra-sensitive magnetic amplifiers where low loss is mandatory.

Soft magnetic composite (SMC) market value share analysis

Why soft magnetic composite material

A schematic diagram of the component elements of a powder core.

Composite after pressing illustrating the ferromagntic part and the insulating layer.

Examples of toroidal inductors on printed circuit board – PCB

Parts made from supermalloy for motors and generators

Why composite Supermalloy based@oxide

Why Aluminium Supermalloy?

During SPS reaction between alloy core and oxide shell

Experimental

Ni70.5Fe18.8Mo4.7Al6 = [Supermalloy (Ni75Fe20Mo5)]94+ Al6 (%wt.) Ni71,25Fe19Mo4.75Al5 = [Supermalloy (Ni75Fe20Mo5)]95+ Al5 (%wt.) Ni71.25Fe23.75Al5

- Starting powders: Ni, Fe, Mo, and Al elemental powder
- Milling time: up to 20 hours
- Milling atmosphere: argon
- •Sampling at: 0,5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 and 20 h
- •Tempered steel vials and balls: 70 balls (φ 14)
- •Ball to powder ration (BPR): 4:1, 8:1 and 17:1

•Annealing at 450 °C for 4 h in Ar

•Surface oxidation: superficial powder oxidations in hydrochloric acid, in air+Ar and industrial burnishing kit

Materials characterisation

X-ray diffraction – XRD – Inel EQUINOX 3000 diffractometer

In-situ high temperature X-ray diffraction - Anton Paar HTK1200N heating furnace + Inel EQUINOX 3000 diffractometer

- Scanning Electron Microscopy SEM: JSM 5600 LV Jeol
- Energy dispersive X-ray analysis EDX: EDX Oxford Instruments, model ULTIMMAX65, Aztec software
- Differential Scanning Calorimetry DSC: Setaram Labsys apparatus
- Fourier Infrared Spectroscopy FTIR: Bruker Tensor 27 Spectrometer
- VSM magnetic measurements

Ni70.5Fe18.8Mo4.7Al6

Ni71.25Fe19Mo4.75Al5

Influence of milling/alloying parameters

Ni71.25Fe23.75Al5

Crystallite size

RESULTS

SEM

Ni70.5Fe18.8Mo4.7Al6

Ni70.5Fe18.8Mo4.7Al6

BPR 17:1 Ni71,25Fe23,75Al5 10 hours MA

BPR 8:1 Ni71,25Fe23,75Al5 and Ni71,25Fe19Mo4,75Al5

EDX

Fe Mo

A

0.5 h MA

2 h MA

8 h MA

Ni70.5Fe18.8Mo4.7Al6

Research Conference of Technical University of Cluj-Napoca, October 20-22, 2021

Ni

EDX

Ni Fe Mo Al

Ni70.5Fe18.8Mo4.7Al6 Research Conference of Technical University of Cluj-Napoca, October 20-22, 2021

FTIR-

Ni71.25Fe19Mo4.75Al5 @oxide and Ni70.5Fe18.8Mo4.7Al6 @oxide (superficial oxidation in HCl)

SEM+EDX - Ni70.5Fe18.8Mo4.7Al6@oxide

superficial powder oxidations in air+Ar

SEM+EDX - <u>Ni70.5Fe18.8Mo4.7Al6@oxide</u>

superficial powder oxidations by industrial burnishing kit

Magnetic characteristics

Conclusions

By mechanosynthesis up to 20 h and annealing new alloys Ni70.5Fe18.8Mo4.7Al6, Ni71.25Fe19Mo4.75Al5 and Ni71.25Fe23.75Al5 as single phase was succesfully obtained.

The alloys are in nanocrystalline state, 15 nm after 15 h of mechanical milling.

The partucles size can be controlled by optimization of milling/alloying parameters

The alloys were superfically oxidazed in order obtain alloy@oxide composite coreshell particles for sintering

The addition of 5-6% wt. of Aluminium does not have a significant impact on magnetisation

Thank you for your attention!

Acknowledgement

This work was supported by a grant of the Romanian Ministry of Education and Research, CCCDI - UEFISCDI, project number PN-III-P2-2.1-PED-2019-3763, within PNCDI III.