Properties of soft magnetic composite compacts produced by spark plasma sintering from pseudo core-shell powders like Me@MeFe₂O₄ type

I. Chicinaş¹, T.F. Marinca¹, F. Popa¹, B.V. Neamţu¹

¹Department of Materials Science and Technology, Technical University of Cluj-Napoca, Romania

Research Conference of UTCN, 21th October

Outline

- Background and motivation
- Experimental details
- Results and discussion
 - Pseudo core-shell powders
 - Spark Plasma Sintered compacts
- Conclusions

UNIVERSITATEA TEHNICĂ CLUJ-NAPOGA

Research Conference of UTCN, 21th October

Background and Motivation

Classical SMC:

Fe-based magnetic alloys powders are covered with a thin dielectric organic/inorganic layer

OUR IDEEA: to isolate magnetic particles by using a magnetic dielectric layer ! or amagnetic resistive alloy layer (Rhometal)!

Experimental Details

Preparation

I. Chicinaş, T.F. Marinca, F. Popa, B.V. Neamţu, Patent RO 130354-B1/30.12.2016

Experimental Details

Preparation

UNIVERSITATEA TEHNICÃ CLUJ-NAPOCA

Pseudo "core-shell" particles preparation Fe-Ni alloys@Ni_{1-x}Me_xFe₂O₄

 Initial powders: nanosized NiFe₂O₄, Ni_{0.5}Zn_{0.5}Fe₂O₄, Ni_{0.5}Cu_{0.5}Fe₂O₄, CuFe₂O₄ 			
Fe NC100.24 (Höganäs) , d > 80 μ m	Fe wt%	NiFe2O4 wt%	NiFe2O4 shell
- Homogenisation: Turbula type apparatus	96,1	3,9	2µm
- dry homogenisation	94,2	5,8	3µm
- wet nothogenization (acetone)	92,49	7,51	4µm
- Compaction: 600 MPa	90,65	9,35	5µm
- Post annealing: crushing and grinding	Ni _{1-x} Me _x F	e ₂ O ₄	
compacts preparation			
Powder: pseudo "core-shel" particles Permalloy@Rhometal <u>Fe@CuFe₂O₄ and Ni-Fe alloy@Ni_{1-x}I</u>	Me _x Fe ₂ O ₄	Why SPS	<u>;</u>
Spark plasma sintering – SPS: pressure of 30 MPa and 400-900 SPS home-made equipment sintering duration 0 minut	0 °C temperat tes (without m	ure range, aintaining)	
I. Chicinaş, I.F. Marinca, F. Popa, B.V. Neamţu, Patent application no.	A/10083/2015	/18.12.2015	

Research Conference of UTCN, 21th October

Caracterisation :

- Particle size distribution Laser Particle Size Analyser (Fritsch Analysette 22 Nanotec)
- Structural : X-ray diffraction $2\theta = 30 110^{\circ}$, with Co K α INEL EQUINOX 3000 in situ HT-X-ray diffraction
- Morphology/composition SEM and EDX: (JSM 5600 LV-Jeol, EDX-Oxford Inst)
- **Magnetic measurements** : M = f(H) 0 8 T, 300 K , B=f(H) cooperation with Université Grenoble Alpes, Institut NÉEL CNRS
- Electrical resistivity

Pseudo "core-shell" particles

Annealing of nanocrystalline Ni₃Fe and Fe carbonyl homogenized powder

Research Conference of UTCN, 21th October

SEM

- nanostructured particle is almost fully covered at the surface by a **layer of Fe**, Ni is almost inexistent in that zones.
- Ni is present in some zones, but there are a **limitet number of zones**.
- A good covering with an Fe layer.

UNIVERSITATEA TEHNICÃ CLUJ-NAPOCA I. Chicinas, *, T.F. Marinca, F. Popa, B.V. Neamtu, Appl. Surf. Sci. 358 (2015) 627–633

Sample Ni3Fe+ 17.9% Fe-carbonyl, 900 °C/1h

EDX line-scan analysis

4 zones in the composite particle:

1. $Ni_{3-\delta}Fe_{1+\delta}$ 2. $Ni_{0.6}Fe_{0.4}$ 3. Rhometal interface 4. Fe(Ni) alloy

I. Chicinas, *, T.F. Marinca, F. Popa, B.V. Neamtu, Appl. Surf. Sci. 358 (2015) 627-633

Pseudo core-shell powder: Fe@NiFe₂O₄

7.5 wt% NiFe₂O₄ (d < 10 μm) 92.5 wt% Fe NC100.24 (d > 80 μm)

Wet mixing in acetone, 700 °C/1h

I. Chicinaş, T.F. Marinca, F. Popa, B.V. Neamţu, Patent application no. A/10083/2015/18.12.2015, OSIM

Pseudo core-shell powder: Fe@NiFe₂O₄

SPS-ed compacts Me@MeFe₂O₄

 $Ni_3Fe@Fe$

 $\underline{\mathsf{Ni}_3\mathsf{Fe}@\mathsf{Ni}_{0.5}\mathsf{Zn}_{0.5}\mathsf{Fe}_2\mathsf{O}_4}$

 $Fe@CuFe_2O_4$

Sample with 17.9 Fe

SPS-ed compacts Ni₃Fe@Fe

EDX analysis

Composite compact: Permalloy particles surrounded by a layer of Rhometal

-Ni₃Fe clusters in a Fe matrix -Ni missing in matrix zone

Sample with 17.9 Fe

SPS-ed compacts Ni₃Fe@Fe

EDX analysis

SPS-ed compacts $\underline{Ni_3}Fe@Ni_{0.5}Zn_{0.5}Fe_2O_4$ (5µm)

in situ HT-XRD analysis, temperature range: 20- 900 °C , <u>Ni₃Fe@Ni_{0.5}Zn_{0.5}Fe₂O₄ (5µm)</u> SPS 600 °C-0 min

Compactes SPS Fe@CuFe₂O₄ (5µm)

Diffractogrames XRD sur compates SPS Fe@CuFe2O4

Résultats et discussions

Compactes SPS <u>Fe/CuFe₂O₄ (5µm)</u>

Images MEB sur le compactes SPS Fe/CuFe₂O₄, 500 °C, 2 min.

Microstructure de compact: des grandes particules de Fe dans un réseau diélectrique et magnétique de ferrite de Cu

Ferrite network

Fe

Oxygen Ka1_2

Cartes des distribution des éléments EDX sur les compactes SPS Fe/CuFe₂O₄, 500 °C, 2 min.

Copper Ka1

J

UNIVERSITATEA TEHNICÃ CLUJ-NAPOCA Compactes SPS <u>Fe/CuFe₂O₄ (5µm)</u>

Propriétés magnétiques et électriques

Perméabilité relative de 75 à B = 0,7 T et 10 kHz - est encourageant!

 $ρ ≈ 1.10^{-4} Ωm$, 3-4 ordre de grandeur supérieur à celui des alliages Fe-Si ρ (6.10⁻⁷ Ωm) – en raison de la présence d'une couche de ferrite.

D'autres mesures électriques et magnétiques sont en cours...

Conclusions

- The Permalloy(Supermalloy)@Rhometal pseudo core-shell powders were successfully obtained starting from nanocrystalline Ni₃Fe intermetallic compound and iron powder;
- The Ni-Fe Alloy @Ni_{1-x}Me_xFe₂O₄ pseudo core-shell powders were successfully obtained starting from Ni3Fe or Fe and Ni_{1-x}Me_xFe₂O₄ powders ;
- The core is composed by Permalloy or Fe and the shell consists in Fe-based alloy or in a soft magnetic ferrite layer;
- The Permalloy(Supermalloy)/Rhometal composite compacts has good magnetic properties
- The electrical resistivity of the SPS-ed composite compacts is with 3-4 order of magnitude larger than electrical resistivity of Fe-Si alloys
- SPS compacts have a larger electrical resistivity as compared to the Fe sintered compacts.

Further investigations:

Pseudo core-shell Fe@ MnZnFe2O4 + SPS Core-shell Fe@Fe304 + cold sintering

Acknowledgements: This work was supported by the grants of the Ministry of Education, CNCS – UEFISCDI, projects number: PN-III-P2-2.1-PED-2016-1816, PN-III-P2-2.1-PED-2016-1816, PN-III-P4-ID-PCE-2020-2264/PCE128/2021

