

### Superconductivity, Spintronics and Surface Science Center

#### Prof.dr. Traian Petrisor

#### History

The Center of Superconductivity, Spintronics and Surface Science (C4S) includes the former Material Science Laboratory, created in 1995 within the **Technical University of Cluj-Napoca (TUCN)**; <u>http://www.c4s.utcluj.ro</u>



#### C4S staff

- •4 Prof/Senior Researchers
- •6 permanent young researchers
- •8 PHD students
- •2 Postdocs
- •2 technicians



### Thin film elaboration

### **UHV sputtering equipment**

6 targets, base pressure 2e-9 Torr



#### Equiped with:

- 2 digital fluxmeters,
- Substrate heater (20-1000 °C)
- Residual gas analyzer (Stanford QMS-200)
- Cryogenic cooling pannel

#### Ar plasma furnace



## E-beam evaporation plant

8rotatable crucibles, base pressure 2e-9 Torr





### Vibrating sample magnetometer (Lake Shore): vector field option, variable temperature range (77-1000K)



Magnetic characterization, anisotropy analysis

### Chemical deposition tools



Laminar flow fume hood for the chemical deposition of thin films equipped with spinner, dip-coater and ultrasound baths



**Tube furnaces** up to 1600°C with controlled atmosphere (oxygen, nitrogen, argon).



**Rotary Evaporation** by BUCHI with Vacuum Pump V-700.

- heating bath can be adjusted from +20  $^{\circ}\mathrm{C}$  to +180  $^{\circ}\mathrm{C}$ 

- rotation speed 20–240 rpm Programmed vacuum (vacuum limit 10<sup>-7</sup> Torr) or controlled atmosphere tube furnaces up to 1600°C

**Argon line** for the synthesis of the moisture sensitive precursors





### Characterization tools

#### High Resolution X ray Diffraction D8 Discover (Bruker)



Structural characterization



### Atomic Force Microscopy

Nanoscope Dimension 3100 - multimode Operating modes AFM, MFM, EFM, C-AFM ...



Topologic, micromagnetic, local electric characterization



### Characterization tools

**Cryogen- free system** with cryostat and VTI 1.8-300K and up to 7T magnetic field, sample rotation option



Magneto-electric characterization in variable field and temperature





### Clean room facilities (class 100):

-Optical lithography (MBJ4 SUSS mask aligner); -Ion Beam etching assisted by Auger Spectroscopy -Chemistry laboratory facilities for nanolithography







**Optical lithography (UTCN)** 











Undercut Neg ma-420

#### Patterning of:

-Micrometric size magnetic objects -Current in plane electric devices (Hall, GMR, superconducting lines) -Current perpendicular to plane devices magnetic tunnel junctions, superconducting spin valves



### Co<sub>2</sub>FeAI based epitaxial MTJs

•Co<sub>2</sub>FeAI (CFA) theoretically 100% spin polarization

Expected large TMR effect





Epitaxial growth by 45° in plane rotation



### Properties of Ni-W/CeO<sub>2</sub>/YSZ/CeO<sub>2</sub>/YBCO coated conductors







Self assembled Polystirene ball masks





Magnetic vortex



### Self organized spheres as shadow masks for IBE of complex MML stacks







Variable shape  $=f(\theta)$ MML nanostructures



Circles, antidots: etching 15°



**Chains** + constrictions (DW manipulation) (variable angle etching)



Hexagones, dots, triangles ...





CFA 10 nm ETCHING 30°

Towards local CPP characterization





MTJ, CPP-GMR, Nano-oscillators...

### **Ongoing research projects**



### C4S Research projects (1995-): 9 International, 13 Euro FP, 10 national

| Nr | Period                      | PROJECT TITLE                                                                                                                                                                                                                                                                                  |  |  |
|----|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1  | 2012-<br>2016<br><b>FP7</b> | European development of Superconducting Tapes: integrating novel materials and architectures into cost effective processes for power applications and magnets. (EUROTAPES)                                                                                                                     |  |  |
| 2  | 2010-<br>2013               | Development of spintronic devices at mezoscopic scale. POSCCE CTR.205/20.07.2010                                                                                                                                                                                                               |  |  |
| 3  | 2010-<br>2013               | <b>Doping and size effects on the magnetic, structural and morphological properties and spin dynamics in micro and nanostructured ferromagnetic oxides.</b> PN II-Complex Exploratory Research Projects, Financed by the Romanian Ministry of Education and Research PNI-ID106, PCCE Nr.4/2010 |  |  |
| 4  | 2010-<br>2013               | <i>From micro to macro - continuum scale modeling of advanced materials in virtual fabrication,</i> PN II-Complex Exploratory Research Projects, Financed by the Romanian Ministry of Education and Research. PNII-ID100, PCCE Nr.6/2010.                                                      |  |  |
| 5  | 2012-<br>2015               | Thick YBCO films with improved superconducting characteristics for coated conductors applications. PNII PT_PCCA-2011-3                                                                                                                                                                         |  |  |

| ISI Publications C4S | / <b>MSL</b> (over 100) | http://www.c4s.utcluj.ro/ |                       |
|----------------------|-------------------------|---------------------------|-----------------------|
| <u>2012</u> (12)     | <u>2010</u> (8)         | <u>2008</u> (12)          | <u>2006-Prev</u> (40) |
| <u>2011</u> (10)     | <u>2009</u> (7)         | <u>2007</u> (11)          |                       |
|                      |                         |                           |                       |

### **Collaboration potential**



- > HTcS superconducting materials and applications
- Spintronics and magnetic materials
- > Thin films deposition (chemical and physical method) and characterization
- > Advanced multifunctional materials (bulk, thin films and nanoparticle)

# Thank you for your attention!